
Mechanical and Computational
Energy Estimation of a Fixed-Wing Drone

Adam Seewald, Hector Garcia de Marina, Henrik Skov Midtiby, and Ulrik Pagh Schultz
SDU UAS Center, Mærsk Mc-Kinney Møller Institute

University of Southern Denmark
Email: {ads,hgm,hemi,ups}@mmmi.sdu.dk

Abstract—In this paper, we present a case study on the energy
estimation of drones and derive a general modeling approach that
estimates computational and mechanical energy separately. The
mechanical energy model can easily be extended to other drones
and is built using a Fourier series from a number of training
flights. The computational energy model is more advanced as it
handles heterogeneous hardware and incorporates a specification
that defines the quality-of-service ranges for software components
of the robotic system. The computational model is suitable
for any mobile robot and is implemented in a modeling tool.
The tool automatically generates an energy model from the
specification by performing a set of empirical trials for selected
configurations while approximating others. Information about the
battery State of Charge is also included in the tool, hence allowing
the evaluation of how different software configurations impact
the battery. This approach can be used for dynamic mission
assessment regarding different planning decisions. We here have
demonstrated its ability to model the energy of a specific mission
performed at varying levels of quality-of-service using a specific
drone.

I. INTRODUCTION

Mobile robots, wearable electronics, and in general portable
embedded devices are all examples of power-critical systems
concerned with energy efficiency. Though this is a common
problem in many different domains, in mobile robotics it is
one of the major challenges as the level of autonomy of mobile
robots is often bounded by a limited power source, typically
represented by a lithium-ion battery. In this paper, we propose
a systematic approach based on a case study, to estimate the
energy consumption of a fixed-wing drone. An accurate esti-
mation of the system within a specific configuration is done by
modeling separately the mechanical and computational energy.
The latter is part of our analysis as in certain mobile robotic
systems more than half of the overall power consumption can
be due to computations, with mechanical motion accounting
for the remaining [1].

Computational energy side: our approach is automatic in the
sense that the developer specifies different components of the
system, along with ranges of quality-of-service (QoS) from the
lowest admissible to the highest achievable. From this infor-
mation, a modeling algorithm automatically generates all the
possible configurations and profiles a number of them while
approximating the others statistically. Mechanical energy side:
using an Opterra fixed-wing drone, a number of training flights
are performed prior to the energy estimation phase. Data from
these flights are collected and further analyzed with a weighted

statistical regression technique, where a Fourier series is used
to describe mechanical energy in time for the three phases of
a flight with major variability: take-off, cruise, and landing.
Finally, using numerical analysis, a battery model is derived
into the battery State of Charge (SoC) to evaluate the battery
efficiency of different components configurations.

The information about SoC can be also used to evalu-
ate the energy cost of different components, or components
executing in a larger component-based framework, like the
one outlined in our previous work [2]. Moreover, SoC is of
particular interest for mobile robots where it can be used
to assess dynamically energy efficiency of software featuring
autonomous tasks, and thus to correlate the battery state to
the level of autonomy. The approach can be further extended
to address computational energy-aware planning decisions. A
drone, for instance, can use the SoC of the current compu-
tation to estimate its energy cost. The information can be
propagated to dynamically adjust component configurations to
meet specific energy targets, as the drone might limit its QoS
in order to meet specific mission-dependent criteria. To this
extent, we presented a modification of a real-time scheduling
algorithm [3] in our previous work [2], that can be used to
assess the energy cost of software components running in a
larger, constrained network where one software component
input might depend from the others. The scheduler is statically
generated in this context, which allows meeting real-time
requirements of many mobile robot scenarios.

Our approach is implemented in a profiling tool named
powprofiler.1 The tool, written in C++ and distributed
under MIT license, has been further extended from [2], [4]
to support the mechanical energy model described in this
paper, as energy estimation of mobile robots often requires an
expected energy value as a function of the mission time. The
current implementation allows deriving an energy model that
includes, but is not limited to, SoC from an arbitrary number
of software components and a given flight mission. It allows
the evaluation of the computational and mechanical energy
consumption against the overall energy budget, and thus to
reduce or increase the computations by adjusting QoS to meet
specific mission-dependent requirements. In a concrete setup,
a mobile robot equipped with powprofiler can potentially
take advantage of the energy model by adaptively selecting

1https://bitbucket.org/adamseew/powprofiler



wk

layer 1, dn

layer 2
layer 1, d1

Power-to-compute

Predictive model

g(D)
Battery SoC

ODEs

Predictor
energy/

energy/

specification

battery/
time

time

configu-
ration

...

...

...

take–off

landing

cruise

f1,1(t)

f1,2(t)

f1,3(t)

w1

...

Scheduler

layer 0, f1

layer 0, fk

...

Fourier
series

optimal
configuration/

schedule
flight
logs

computational modelmechanical model

Fig. 1. Overview of the mechanical and computational energy estimation approach

different QoS levels depending on the current battery state.
The rest of this paper is organized as follows. Section II

reviews the related work for energy modeling and optimization
for mobile robots. Section III examines further the details
of the three energy models, mechanical, computational, and
battery, while Section IV assesses our experimental setup
along with the results. Section V concludes our analysis and
presents future work.

II. RELATED WORK

Battery models for energy estimation have been extensively
studied in the literature. A broad summary of different models
was presented by Rao et al [5]. The contribution shows four
classes of battery models, with different levels of detail and
complexity. In the robotics domain, battery models used for
mobile robots often rely on an equivalent electrical circuit,
due to a linear relation between the circuit voltage and SoC,
described in the work done by Pang et al. [6]. The contribution
presented by Chiasson et al. [7], estimates SoC with such
a circuit but does not apply the model to a use-case. Many
other contributions extend Kalman Filter for SoC parameters
estimation [8], [9], or focus on advanced metrics, i.e., battery
state of health, and battery state of function [10]. However,
they generally do not provide an energy modeling strategy for
mobile robots.

Energy models for mobile robots have been previously
studied by Mei et al. [1], [11], [12]. The former contribu-
tion [11] proposed energy-efficient motion planning to mini-
mize mechanical energy. The contribution investigates efficient
energy plans but does not account for computational energy.
Later, Mei et al. [1] introduced the separation between the
microcontroller and embedded computer for flexible mobile
robot design. The contribution presents energy-conservation
techniques such as dynamic power management and real-time
scheduling. The last contribution [12] focused on an energy-
efficient deployment algorithm in environments with obstacles.
Mei et al., however, do not provide a direct battery state

estimation technique, and in general, the above three contri-
butions focus little on computational energy. Our approach
influence on battery state relative to the computational part
for a broad class of mobile robots but also limits the analysis
of the mechanical energy for a specific fixed-wing drone.
Nevertheless, the mechanical energy approach can be easily
extended to a broader class of drones and the computational
energy approach to potentially any class of mobile robots.

Of particular interest is the contribution by Berenz et
al. [13], which outlined a dynamic recharge approach for
battery management based on the mission assessment. They
used a wheeled mobile robot capable of self-docking to a
battery rechange station but did not focus further on com-
putational energy awareness. Wheeled mobile robots were
also investigated by Kim et al. [14], [15]. They, however,
do not evaluate modeling, rather examine energy-efficient
motion control (in [14]), or include optimal control theory for
minimum energy trajectories (in [15]). An energy modeling
approach that relies on statistical models in the absence of
measurements is developed by Sadrpour et al. [16], [17]. The
approach focuses on field robots and does not account for SoC.

Drones energy efficiency specifically have been also studied
in the literature, as drones are typically known to be very
battery dependent [4]. Most researchers focused in the past
on mechanical energy, with little or none contribution on
computation. To this extent, Uragun [18] suggests the use of
power-efficient components. Kreciglowa et al. [19], research
efficient trajectory generation methods, while Kanellakis et
al. [20], suggest limiting resources for computing and sensing.

III. ENERGY ESTIMATION

In this paper, energy estimation is achieved by merging three
different energy models, mechanical, computational, and bat-
tery. While the first two require direct developer’s interaction,
the battery model is automatically generated upon the defini-
tion of battery-specific parameters and allows the evaluation
of different mission dependent configurations. A mobile robot



is often equipped with at least two different computational
units: a microcontroller that controls low-level real-time tasks,
such as motor control, and a heterogeneous embedded device
which takes care of computationally heavy operations, such as
path planning, obstacle avoidance, environment mapping, and
object detection.

We present a case study of an Opterra fixed-wing drone
equipped with Apogee v1.00 microcontroller which uses
Paparazzi UAV firmware for the autopilot [21]. Moreover,
the drone is equipped with a 3200 mAh battery, suited for
agricultural use-case requirements, where a drone flies on
a preassigned flying route and collects images for further
analysis. An NVIDIA Jetson TX2 embedded board is eval-
uated separately with two computationally heavy components,
object detection, and encryption. Both components allow spec-
ifying different levels of QoS, that can be adapted according
to the current battery state evaluated through powprofiler

during the mission.

A. Overview

Figure 1 presents an overview of the mechanical and
computational energy estimation approaches presented in this
paper. From k test flights f1, f2, . . . , fk, different functions
using a Fourier series are derived with a regression technique
into layer 0 for the three flight phases. The Fourier series is
used since the mission, in general, follows periodic patterns.
As a result, the approach is well suitable for flight phases
with circular trajectories, although it can be easily extended
to missions with other kinds of trajectories, which might be
better described using different interpolation techniques for the
entire flight or for specific phases.

The mechanical model described in this fashion is later used
in the computational model, that derives into layer 2 different
software configurations d1, d2, . . . , dn ∈ D (where D is the
set of all the configurations). The resulting predictive function
g(D) in layer 2 maps configurations to the overall energy,
average power, and battery SoC. The different configurations
are profiled in layer 1, where the mechanical energy is merged
with computational energy per configuration as it is integrated
into SoC using an ordinary differential equation or ODE.

B. Mechanical Energy Model

In this subsection, a regression technique to build a me-
chanical energy model is described. The model is specific
for an Opterra drone, but an equivalent technique can be
applied to any fixed-wing drone. Key to the technique is
the distinction between three phases of the flight: take-off,
cruise, and landing. The distinction between these three phases
follows from experimental data, as we observed that different
flights present similar behavior and almost identical tenden-
cies. This means that each phase has a different altitude and
overall time evolution concerning motor torque and power
drain. In particular, less variability in energy evolution is
observed during the cruise and take-off. This applies when
we analyze a single test flight, and when we analyze a set of
flights regarding their phases. In the latter, we observed little

variability in the cruise phase of different flights, as this is
performed mostly by the autopilot with variability often due to
wind conditions, while take-off of a fixed-wing drone usually
presents a similar set of controls with little variability. Landing
is observed to be the phase that presents the largest variability
in the collected data, as the procedure requires specific and
conditions-dependent maneuvers. Furthermore, glide slope and
ground effect, specific to landing site conditions, also affect
the controls sequence.

A weighted average time derived from collected data of 28
seconds, 10 minutes, and 1 minute, for respectively take-off,
cruise, and landing, is assumed to model a test mission that
we use in this paper. The information is used in the regression
technique to map time to the current energy consumption. Re-
gression itself consists of a phase-specific third-order Fourier
series, as the data often presents a periodic behavior and tends
to diverge for higher orders while not mapping precisely to the
power evolution in time for lower ones. The following equation
represents the power as a function of time t for each of the
three phases:

f(t) =

3∑
n=0

an cos

(
nt

ξ

)
+ bn sin

(
nt

ξ

)
, (1)

where an, bn are the Fourier series coefficients, ξ is a
characteristic time, and:

f(t), t, an, bn, ξ ∈ R, (2)

The Mechanical energy evolution in time can be expressed
through a three-dimensional vector f :

f(t) =
[
f1(t) f2(t) f3(t)

]T
, (3)

where f1(t), f2(t), f3(t) are the energy evolutions in time for
take-off, cruise, and landing respectively.

The mechanical energy model from Equations (1–3), can
also be expressed in a matrix form:

f(t) =

1a0
1b0 · · · 1a3

1b3
2a0

2b0 · · · 2a3
2b3

3a0
3b0 · · · 3a3

3b3



cos 0t

ξ

sin 0t
ξ

...
cos 3t

ξ

sin 3t
ξ

 . (4)

The constants an, bn, and ξ, for the regressions fi(t)
with i ∈ 1, 2, 3 (and thus for f(t)) were found using the
Levenberg-Marquardt algorithm implemented in Matlab. The
above procedure, however, just accounts for one flight. A
further analysis concerns the generation of power trajectories
through the technique for each test flight. An interpolating
curve is then built using a probabilistic approach, that simply
indicates a weight for a given flight k. This can be particularly
useful as some flights can be affected by other conditions
such as wind, temperature, or battery state at the beginning of
the mission, thus affecting the model behavior unexpectedly.
Given k flights and a vector of weights w, the mechanical



model can be in this fashion expressed using an equivalent
expression to Equation (2):

f̃(t) =

f1,1(t) f1,2(t) f1,3(t)
...

...
...

fk,1(t) fk,2(t) fk,3(t)


T w1

...
wk

 , (5)

where wi is the associated weight for a specific flight i, that
expresses its accuracy according to the set of all the collected
flights, and:

w ∈ Rk,
wi ∈ [0, 1],

w1 + w2 + · · ·+ wk = 1.

(6)

Based on a simple reordering, Equations (4–6) can be also
expressed:

f̃(t) =



1,1a0
1,2a0

1,3a0
1,1b0

1,2b0
1,3b0

...
...

...
1,1a3

1,2a3
1,3a3

1,1b3
1,2b3

1,3b3
2,1a0

2,2a0
2,3a0

2,1b0
2,2b0

2,3b0
...

...
...

k,1a3
k,2a3

k,3a3
k,1b3

k,2b3
k,3b3



T


w1 cos
0t
ξ

w1 sin
0t
ξ

...
w1 cos

3t
ξ

w1 sin
3t
ξ

w2 cos
0t
ξ

w2 sin
0t
ξ

...
wk cos

3t
ξ

wk sin
3t
ξ



. (7)

Equation (7) can be used to derive all the constants for
the three phases of the flight, and thus to describe the power
consumption in the function of time for take-off, cruise, and
landing. Table I outlines the constants that we obtained on
the Opterra fixed-wing drone test flights of the agricultural
use-case.

TABLE I
CONSTANTS FOR THE MECHANICAL ENERGY MODEL

take-off cruise landing

a0 29.97 27.22 27.21
a1 1.57 0.3737 -0.9512
b1 -1.963 1.194 1.276
a2 0.3876 0.6513 0.9357
b2 -1.552 0.2954 0.965
a3 -0.2869 0.5039 0.4913
b3 -0.547 -0.2864 -0.1192
ξ 0.1525 0.1799 0.1296

C. Computational Energy Model

The computational energy model is a hardware-specific ab-
straction that maps different software configurations to energy
consumption. Any software configuration can give a different
energy evolution, as software in our analysis is composed
of several components. Each component accepts QoS-specific
parameters and hence affects the computational energy drain
accordingly. As a concrete example, the object detection

component accepts a parameter, the time in milliseconds,
to express the period between two consecutive detections.
The QoS “frames-per-second rate” can be directly mapped
to this parameter with powprofiler that will automatically
generate a computational energy model and therefore show
the energy evolution for different “frames-per-second rate”
configurations. The energy consumption of the drone can
in this fashion be estimated by comparing current against
future configuration, since when adjusting the configuration
the battery SoC can change considerably (as described later
in this section).

Data from the powprofiler tool can thus be used to
estimate the energy consumption of different software con-
figurations, once the energy model has been built from a
set of profiled trials. This is a process that powprofiler

automatically takes charge of. The tool expects a specification
file that specifies the components along with QoS ranges (the
specification is further described in our previous work [4]).
The tool first generates a layer 1 model, which maps time to
energy consumption for each configuration. A simple statisti-
cal approximation technique based on a weighted average is
performed to produce a layer 2 model, which maps energy
consumption to all the configurations within the QoS range.
The output is a comma-separated values file, but the model
can also be queried through an API.

The computation can be adjusted dynamically in the sense
that the system can evaluate how different configurations
will affect the energy consumption, and by implementing a
scheduling strategy accordingly (we presented an example
of a component-based scheduling strategy in our previous
work [2]). The computational energy model could furthermore
be integrated into a component-based framework, such as the
ROS middleware, or the TeamPlay components toolchain [22].

D. Battery Model
Battery requirements are a key aspect of almost any mobile

robot as the completion of a mission is often limited by
the available amount of energy [14]. We present a battery
abstraction in this subsection to: a) evaluate the effect of
different computational models, and b) estimate the impact
of mechanical energy on the battery SoC. The final objective
of battery SoC estimation is to predict the energy consumption
of different software configurations.

Given following general expression for the battery SoC:

d

dt
SoC(t) = −Iint(t)

Qc
, (8)

where Iint is the current load, Qc the constant nominal
capacity, and:

SoC(t), Iint(t), Qc ∈ R, (9)

the battery model can be derived from an equivalent electrical
circuit, like the one presented by Hasan et al. [9]. Such a model
consists of an ODE which describes the evolution in time of
battery SoC with the following expression for the current load:

Iint(t) =
Uint −

√
U2
int − 4 ·Rint · Usta · Iload(t)

2 ·Rint
, (10)



0

50

100

150

200

060
120180

240
0

10

20

30

Begin take-off

End take-off

x
(m

)

y (m)

A
lti

tu
de

(m
)

(a) Take-off phase path

0 50 100 150 200 0
60

120
180

240

0

10

20

30

Begin landing

End landing

x (m)

y
(m

)

A
lti

tu
de

(m
)

(b) Landing phase path

24

26

28

30

32

34

0 7 14 21 28

Po
w

er
(W

)

Time (s)

Take-off

(c) Take-off phase energy evolution

24

26

28

30

32

34

00:00 02:30 05:00 07:30 10:00

Po
w

er
(W

)

Time (mm:ss)

Cruise

(d) Cruise phase energy evolution

24

26

28

30

32

34

0 15 30 45 60
Po

w
er

(W
)
Time (s)

Landing

(e) Landing phase energy evolution

Fig. 2. The evolution in time of energy and paths for three different flight phases. take-off, cruise, and landing

where Uint is the internal battery voltage, Rint the internal re-
sistance, Usta the stabilized voltage, Iload the current required
by the load, i.e., the mechanical and computational energy,
and:

Iload(t), Uint, Rint, Usta ∈ R. (11)

All the constants presented above in Equations (8–11) were
chosen to satisfy the requirements of an embedded device.

A classic Runge-Kutta iterative method is implemented in
powprofiler to solve the ODE from Equations (8–11). The
initial value of 100% is in this way integrated over time
with the computational model from different configurations.
Specifically, the computational energy drain is transformed
into the current drain Iload(t) from Equation (10). Results
are stored in a layer 2 model that can be further analyzed to
estimate overall energy. Our initial approach towards numer-
ical integration in powprofiler tool included Runge-Kutta-
Nyström modfication [23], as a second-order ODE was used
initially to describe the equivalent electrical circuit (a solution
that turned out to be unnecessary for the energy estimation in
this paper).

IV. EVALUATION

Mechanical, computational and battery energy models are
evaluated in this Section using respectively: a) the Opterra
fixed-wing drone performing an agricultural use-case intro-
duced in Section III, b) the Jetson TX2 board for the object
detection featuring YOLO neural network [24], and symmetric
encryption featuring Blowfish algorithm [25], and c) the use of
the battery model presented in Equations (8–11) to determine
the SoC evolution throughout the mission of the drone.

A. Mechanical Model Evaluation

The mechanical energy model presented in Subsection III-B,
was evaluated by analyzing flight logs and deriving the
constants from Equations (5–7). Test flights were performed
featuring the agricultural use-case in different times, although
in the same hardware and software configuration. The flight
logs were retrieved through the Paparazzi UAV autopilot
firmware and were further analyzed with Matlab. Different
flight phases f1(t), f2(t), f3(t) were first defined for each
flight, later merged in three Fourier series that map time to



0

25

50

75

100

00:00 02:30 05:00 07:30 10:00

So
C

(%
)

Time (mm:ss)

{-}
{5.8, 32}
{10, 240}
{32, 448}

(a) SoC as a function of time for different configurations

0

25

50

75

100

00:00 02:30 05:00 07:30 10:00

So
C

(%
)

Time (mm:ss)

phased
adaptative

(b) Two examples of the evolution of SoC-aware schedules

Fig. 3. Different SoC evolutions in time

energy consumption for take-off, cruise and landing respec-
tively.

Figure 2(a) shows first how the take-off phase for a flight
was derived. To obtain this information we analyzed the
altitude, motor torque, and power drain. Specifically, the drone
takes altitude in the first part of the take-off phase and inserts
itself into the circular trajectory later performed during the
cruise phase. Figure 2(c) shows the energy evolution (in black)
for f1(t), which means that the Fourier series is calculated
using a number of test flights. The energy consumption of
those evolves in the gray section of the plot, i.e., the gray
section indicates all the test flights, while the black indicates
the take-off mechanical energy model. Little variability can
be observed during the first part of the take-off phase, as
different weather conditions often result in different take-off
controls. Very little or no variation is observed in the latter
part, corresponding to the insertion into the circular trajectory,
as this is the part where autopilot takes control over the human
operator.

Similarly, the cruise phase is modeled through f2(t) as
shown in Figure 2(d). There is very little variability in the
different flights’ evolution, as the cruise phase is always
performed by the autopilot in our analysis. An overall descent
tendency can be observed, with fewer watts drained from the
battery. This is the result of a gradual battery depletion during
the flight and is common to all the flights that we analyzed.

The landing phase f3(t) presents the most variable behavior,
as shown in Figure 2(e). A landing trajectory of a flight
can be seen in Figure 2(b), where first the drone performs
small circles lowering the altitude, and later descends to the
ground under control of a human operator. The phase is very
dependent on different conditions, and thus requires direct
adjustment with regard to the current landing site and/or wind
conditions. From the plot, we can observe major variability
at the beginning where the power drain is dependent on the
current altitude, and at the end, where it is mostly dependent
on the landing site conditions.

B. Computational Model Evaluation
The computational energy model has been extensively eval-

uated for different embedded boards in our previous work [4].
Here we focus on modeling the energy estimation of different
software configurations, as our case study is composed of two
software components that present different ranges of QoS. The
model is built for object detection and symmetric encryption
algorithms using the powprofiler tool.

The object detection component has been modeled in the
range between 5.8 and 32 frames, representing the QoS
“frames-per-second rate”. The resulting energy model shows
the evolution of energy as a function of FPS, such that a
higher frames-per-second rate results in higher overall en-
ergy consumption. The data were profiled and modeled with
powprofiler, which automatically evaluated four ranges of
frames per second rates, 5.8, 10, 25 and 32, and built a
statistical model for the missing ones. The analysis on the
encryption component was done in the range between 32 and
448 bits, representing the QoS range “key-size”. We used
Blowfish symmetric and variable-key encryption algorithm for
this purpose [25], and the OpenSSL command-line tool to per-
form cyclic encryption of a heavy data-file of approximately
150 MB [26]. Both object detection and encryption were
further merged arithmetically, to model battery SoC of using
the two components concurrently (Figure 4). In a concrete
implementation of the computational energy model, a layer
2 model can be automatically derived through powprofiler

for either separate components that are subsequently analyzed
(an approach that we investigated in our previous work [2]) or
for components running in parallel. In the latter, the modeling
time is higher since components combinations are evaluated
empirically.

C. Mission Assesment
The computational energy model can be correlated to

the mechanical energy model with the battery SoC using
powprofiler which estimates the current battery state using
Equations (8–11). The analysis holds under the assumption



5.8 12 19 26 32
FPS

32

126

240

344

448

K
ey

–s
iz

e

20

60

So
C

(%
)

Fig. 4. Estimated SoC as a function of frames-per-second rate and key-size
QoS ranges after completing a mission

that SoC is approximately linear in the considered interval.
Concretely, the mechanical model can be included into a
powprofiler model that describes the current mechanical
energy evolution in time through a discrete set of values (an
operation that can be computed by, e.g., using Matlab: first
a csv file can be exported from Matlab, this file can then be
included into the model). The information is used to correlate
the current software configuration to the remaining battery and
thus to estimate the future energy cost. Data from Figure 4
shows how the battery SoC changes as a function of different
configurations. In general, the higher the FPS rate and key-
size, the larger the impact on the battery. SoC information can
be evaluated on any initial conditions, allowing the evaluation
of a specific configuration on the current battery state. In this
paper we assume a fixed dependency on mechanical energy,
meaning only the computational energy can be affected by
varying QoS ranges.

Figure 3 shows the energy estimation (both computational
and mechanical) of SoC using different schedules. First, Fig-
ure 3(a) shows an invariant schedule. The solid line indicates
the mechanical energy model, with no computations included.
The model is almost linear, as the power drain varies just in
a small interval at the beginning (cf. Figure 2(c)), and then
presents little variability (cf. Figures 2(d), 2(e)). The other
lines of Figure 3(a) show the evolution of mechanical and
computational models together with configurations of 5.8 FPS
and 32 bits, 10 FPS and 240 bits, and 32 FPS and 448 bits
respectively.

Figure 3(b), shows the energy estimation (mechanical and
computational) of two variable schedules. The phased sched-
ule uses 5.8 FPS and 32 bits configuration during take-off and
landing, 32 FPS and 448 bits configuration for two minutes
during the cruise phase (exactly in the middle), and 10 FPS and
240 bits configuration otherwise. A resulting SoC of 2.05%
was determined using our model. The adaptive schedule uses
32 FPS and 448 bits configuration for two minutes during the
cruise phase, and 5.8 FPS and 32 bits configuration otherwise,
with a resulting SoC of 7.86%.

Using a battery model allows the evaluation of some battery-

specific behaviors, as the battery evolution in time is non-
linear. For instance, in some particular schedules (described
in our previous work [4]) the battery SoC can be different
even if the overall energy consumption is equal (the battery
behaves better with a constant power drain against a spiked
one).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a case study for the energy
estimation of a fixed-wing drone. Although mechanical energy
data are assessed using a number of flights with an Opterra
fixed-wing drone, our approach towards mechanical energy
modeling can easily be extended to other drones. We modeled
mechanical energy using a Fourier series for three phases of
the flight with major variability, for take-off, cruise, and land-
ing. Computational energy is estimated using an empirical ap-
proach, where software components are evaluated for specific
ranges of QoS and approximated for others. Computational
and mechanical models are generated using the powprofiler
tool and automatically integrated into the battery model to
obtain battery SoC and thus to estimate the cost of different
software components configurations. Our approach allows the
evaluation of dynamic scheduling decisions, as the drone
might limit computations to be able to complete the mission.

In terms of future work, we aim to define automatic dy-
namic scheduling options (the schedule is currently statically
generated) and evaluate them on a flying drone. A direct ROS
interface for powprofiler is also being considered, as many
mobile robotic systems rely on ROS middleware. A variable
definition of the mechanical model will be included later
in our analysis since dynamic path planning against current
computation can considerably extend our approach, enabling a
complete energy awareness for both motion and computation.
Such a model should also take into account the effect of the
surrounding environment, such as weather conditions.

ACKNOWLEDGMENT

This work is supported and partly funded by the European
Unions Horizon2020 research and innovation program under
grant agreement No. 779882 (TeamPlay). The authors thank
Amit Ferenz Appel for the contribution to the training flights
used in the mechanical energy model in this paper.

REFERENCES

[1] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “A case study of mobile
robot’s energy consumption and conservation techniques,” in ICAR’05.
Proceedings., 12th International Conference on Advanced Robotics,
2005. IEEE, 2005, pp. 492–497.

[2] A. Seewald, U. P. Schultz, J. Roeder, B. Rouxel, and C. Grelck,
“Component-based computation-energy modeling for embedded sys-
tems,” in Proceedings Companion of the 2019 ACM SIGPLAN Inter-
national Conference on Systems, Programming, Languages, and Appli-
cations: Software for Humanity. ACM, 2019, pp. 5–6.

[3] B. Rouxel, R. Julius, A. Sebastian, and G. Clemens, “A time, energy
and security coordination approach,” in 10th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-Time Systems
(WATERS 2019), 2019.

[4] A. Seewald, U. P. Schultz, E. Ebeid, and H. S. Midtiby, “Coarse-grained
computation-oriented energy modeling for heterogeneous parallel em-
bedded systems,” International Journal of Parallel Programming, pp.
1–22, 2019.



[5] R. Rao, S. Vrudhula, and D. N. Rakhmatov, “Battery modeling for
energy aware system design,” Computer, vol. 36, no. 12, pp. 77–87,
2003.

[6] S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge esti-
mation,” in Proceedings of the 2001 American control conference.(Cat.
No. 01CH37148), vol. 2. IEEE, 2001, pp. 1644–1649.

[7] J. Chiasson and B. Vairamohan, “Estimating the state of charge of
a battery,” in Proceedings of the 2003 American Control Conference,
2003., vol. 4. IEEE, 2003, pp. 2863–2868.

[8] M. Partovibakhsh and G. Liu, “An adaptive unscented kalman filtering
approach for online estimation of model parameters and state-of-charge
of lithium-ion batteries for autonomous mobile robots,” IEEE Transac-
tions on Control Systems Technology, vol. 23, no. 1, pp. 357–363, 2014.

[9] A. Hasan, M. Skriver, and T. A. Johansen, “Exogenous kalman filter
for state-of-charge estimation in lithium-ion batteries,” in 2018 IEEE
Conference on Control Technology and Applications (CCTA). IEEE,
2018, pp. 1403–1408.

[10] F. Zhang, G. Liu, and L. Fang, “Battery state estimation using unscented
kalman filter,” in 2009 IEEE International Conference on Robotics and
Automation. IEEE, 2009, pp. 1863–1868.

[11] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “Energy-efficient motion
planning for mobile robots,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5.
IEEE, 2004, pp. 4344–4349.

[12] ——, “Deployment of mobile robots with energy and timing con-
straints,” IEEE Transactions on robotics, vol. 22, no. 3, pp. 507–522,
2006.

[13] V. Berenz, F. Tanaka, and K. Suzuki, “Autonomous battery manage-
ment for mobile robots based on risk and gain assessment,” Artificial
Intelligence Review, vol. 37, no. 3, pp. 217–237, 2012.

[14] C. H. Kim and B. K. Kim, “Energy-saving 3-step velocity control
algorithm for battery-powered wheeled mobile robots,” in Proceedings
of the 2005 IEEE international conference on robotics and automation.
IEEE, 2005, pp. 2375–2380.

[15] H. Kim and B.-K. Kim, “Minimum-energy translational trajectory plan-
ning for battery-powered three-wheeled omni-directional mobile robots,”

in 2008 10th International Conference on Control, Automation, Robotics
and Vision. IEEE, 2008, pp. 1730–1735.

[16] A. Sadrpour, J. Jin, and A. G. Ulsoy, “Mission energy prediction for
unmanned ground vehicles using real-time measurements and prior
knowledge,” Journal of Field Robotics, vol. 30, no. 3, pp. 399–414,
2013.

[17] ——, “Experimental validation of mission energy prediction model for
unmanned ground vehicles,” in 2013 American Control Conference.
IEEE, 2013, pp. 5960–5965.

[18] B. Uragun, “Energy efficiency for unmanned aerial vehicles,” in 2011
10th International Conference on Machine Learning and Applications
and Workshops, vol. 2. IEEE, 2011, pp. 316–320.

[19] N. Kreciglowa, K. Karydis, and V. Kumar, “Energy efficiency of
trajectory generation methods for stop-and-go aerial robot navigation,” in
2017 International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2017, pp. 656–662.

[20] C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision for
uavs: Current developments and trends,” Journal of Intelligent & Robotic
Systems, vol. 87, no. 1, pp. 141–168, 2017.

[21] Paparazzi. UAV open-source project. [Online]. Available: http:
//wiki.paparazziuav.org/

[22] “Public deliverables of the TeamPlay Horizon2020 project,” https://
teamplay-h2020.eu/index.php?page=deliverables, 2019, accessed: 2019-
08-25.

[23] B. Paternoster, “Runge-kutta (-nyström) methods for odes with peri-
odic solutions based on trigonometric polynomials,” Applied Numerical
Mathematics, vol. 28, no. 2-4, pp. 401–412, 1998.

[24] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[25] B. Schneier, “Description of a new variable-length key, 64-bit block
cipher (blowfish),” in International Workshop on Fast Software Encryp-
tion. Springer, 1993, pp. 191–204.

[26] J. Viega, M. Messier, and P. Chandra, Network security with openSSL:
cryptography for secure communications. O’Reilly, 2002.


