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Abstract—In this paper, we present the design and evaluation
of a vision-based algorithm for autonomous tracking and landing
on a moving platform in varying environmental conditions. We
use an energy-aware approach, where the design of the algorithm
is based on an evaluation of the energy consumption and Quality
of Service (QoS) of each computational component. We evaluate
our approach with an agricultural use case where a moving
platform is tracked using a landing marker and the YOLOv3-
tiny CNN is used to detect ground-based hazards. We perform
all computations onboard using an NVIDIA Jetson Nano and
analyse the impact on the flight time by profiling the energy
consumption of the marker detection and the CNN. Experiments
are conducted in Gazebo simulation using an energy modeling
tool to measure the computational energy cost as a function of
QoS. We test the energy efficiency and robustness of our system
in various dynamic wind disturbances. We show that the marker
detection algorithm can be run at the highest QoS with only
a marginal energy overhead whereas adapting the QoS level of
CNN results in a considerable power saving. The power saving
is significant for a system executing on a fixed-wing UAV.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly used for
applications such as monitoring, surveillance, and agriculture.
Extending the flying time of a UAV can be done by landing
to replace or charge the battery before continuing the mission.
GPS is however insufficient for robust precision landing. We
investigate the use of a vision-based autonomous landing
system and evaluate its robustness towards environmental
conditions such as visual disturbances and wind.

Extension of flight time can be achieved by using energy-
aware design of algorithms to reduce energy consumption by
reducing the Quality of Service (QoS) where it has little impact
on overall system performance. Energy-costly computations
are adapted by selecting the desired QoS to match the available
energy [1]. We aim to combine energy-aware algorithm design
with autonomous landing capabilities to extend the flight time
and increase the total availability of the UAV.

The main contribution of this paper concerns the expe-
rimental study of a vision-based algorithm for autonomous
tracking and landing in varying environmental conditions.
The algorithms are executed on an NVIDIA Jetson Nano
companion computer controlling a simulated drone. The al-
gorithms provide novel capabilities in terms of tolerance to
visual disturbance and varying environmental conditions such
as wind. Our experiments are based on an agricultural use-case
where a UAV performs visual identification of ground-based
hazards while tracking and landing on a moving platform.

II. STATE OF THE ART

Vision-based autonomous landing has used landing markers
in an “H”-shape pattern; landing markers inspired by QR
code [2]; ArUco markers [3], AprilTag markers [4]; and
special-pattern black and white markers [5] and color mark-
ers [6]. An onboard implementation of the computer vision
algorithms to detect a moving platform has been demonstrated
using CPU [7] and GPU [8]. Wind conditions are generally
kept stable, i.e., a constant wind speed of 5m/s has been used
as an external disturbance in a simulation environment [9].
Concerning position estimation for landing, similar to our
approach a Kalman Filter or Extended Kalman Filter (EKF)
has been used for the estimation [10], as well as a velocity
observer algorithm based on calculating the actual moving
distance of the moving platform over a period of time [8].

Energy modeling of computer vision algorithms was in-
vestigated in SLAMBench [11], a framework that automati-
cally evaluates algorithm configuration alternatives for energy
efficiency. Mission-based energy models [12] have focused
mostly on ground-based autonomous vehicles rather than
UAVs. The relation between motion and energy in a robot
has been investigated [13], but without accounting for the
energy required for computation. Energy modeling of mobile
robots [14] has provided the basis for our concept of energy-
aware algorithm design. Indeed, such modeling has evolved
from an energy-efficient motion planning technique [15], a
design strategy that allows accounting for motion and compu-
tations separately [16], to an energy-efficient robot deployment
algorithm [14].

In this work we propose a new marker pattern robust to
occlusions and suitable for a realistic outdoor case. Since the
GPU cannot normally run different algorithms simultaneously,
we utilize the CPU for detecting the landing marker and
the GPU for a CNN to detect ground hazards. By doing
so, a different QoS can be chosen for each algorithm. We
use powprofiler, a generic energy modeling tool [17], to
measure the energy impact of different configurations of the
ROS-based system implementing the agricultural use-case.
The powprofiler tool is part of the TeamPlay toolchain,
which aims to make tradeoffs between energy and other non-
functional properties accessible to the developer. In this paper,
we present extensions to powprofiler that facilitates the
initial exploration of the energy usage of ROS-based systems.



III. ENERGY-AWARE SYSTEM DESIGN

The energy-aware design approach is a mission-oriented
concept that adjusts the computations to the mission being
performed while taking into account energy requirements.
Here, we profile and adapt the computationally heavy algo-
rithms performing autonomous tracking, landing, and hazard
detection. This adaptation is energy-aware in the sense that
QoS parameters are adapted to enable the mission to be
completed at the highest possible QoS level that does not
significantly impact the available energy budget. Tradeoffs
between QoS parameters are thus be made as part of the
system design, i.e., trading the robustness towards wind during
landing for precision of hazard detection.

Energy-aware design using powprofiler relies on empir-
ical experiments to measure the actual power consumption on
the robot hardware [17]. In this paper, we focus on profiling
the energy usage of the companion computer, which from
the point of view of energy consumption can be studied
independently from the specific drone it is mounted in. The
developer must specify the maximum and minimum QoS level
for each algorithm running on the system. During mission
execution the levels are statically defined: automatic, dynamic
adaptation is considered future work.

The developer executes the system to empirically determine
the power consumption in one of two ways:

1) Automatically using powprofiler to control the experi-
ment execution [17]. For a ROS-based system, we assume
that the algorithms are wrapped as ROS nodes, and we
require the developer to declare the QoS parameters. The
QoS parameters are interpreted by powprofiler, iter-
ating through all possible combinations and empirically
sampling the energy consumption of each combination
of QoS parameters. Once all combinations have been
iterated through, powprofiler automatically combines
the energy consumption data into a complete model.

2) Semi-automatically using powprofiler to sample en-
ergy and combine the results of all experiments, but
allowing the developer to control all aspects of the ex-
periment execution. This new approach uses a dedicated
ROS node interfaced to powprofiler, enabling the
developer to start/stop sampling in a given configuration
by publishing on a topic. Once all experiments have
been completed, powprofiler is invoked to combine
the energy consumption data into a complete model.

Regardless of the approach, powprofiler builds a model
mapping QoS to total system energy consumption. Coarse-
grained sampling is employed to reduce the number of exper-
iments, and missing values are automatically inferred from the
others by the means of a multivariate linear interpolation.

In the context of this paper, sampling experiments are iter-
ated in a simulated environment with different configurations.
For example, the autonomous tracking allows changing the
tracking algorithm QoS in terms of frequency, the landing
algorithm in terms of frequency, and hazard detection QoS
in terms of frequency.

Fig. 1. Left: landing marker. Middle: n-fold marker detection kernel (white
regions on kernel and marker correspond to real values and black regions
to imaginary values, grey area on the kernel is of no concern). Top-right:
detection under occlusion on the tip of the n-fold marker. Bottom-right:
detected under occlusion of a sector of the n-fold marker.

IV. VISION-BASED TRACKING AND LANDING

To mark the moving platform a special pattern is used,
consisting of an n-fold marker [18] and three ArUco mark-
ers [19] with different ids. This pattern is referred to as the
landing marker and can be seen in Fig. 1. The n-fold marker
is primarily used to detect the moving platform from a high
altitude, while the ArUco markers are used as extra landmarks
in case the marker is partially visible in the image frame.

To extract the pixel coordinates of the tip (center) of the
n-fold marker, a kernel size of 13×13 pixels consisting of a
real and imaginary part is created. We present a larger kernel
size for visualisation purposes in Fig. 1. For every pixel in
the image, a convolution is performed with this kernel and
the magnitude of the convolution is stored. For the pixel with
the highest magnitude, an overall normalized quality score q
between 0.0 and 1.0 is calculated. If the score is above the
threshold then the pixel is accepted as the tip of the n-fold
marker. An adaptive kernel selection function is implemented
to ensure the selection of a proper minimum kernel size k
based on a threshold quality score value q, balancing between
the computationally expensive convolution process and the
effective marker detection. The marker detection results under
two different occlusion cases can be seen in Fig. 1. To detect
the ArUco markers the standard OpenCV library is used.

To convert the pixel coordinates into a relative position
the PX4 flight controller’s onboard sensor measurements are
utilized. The altitude of the UAV is obtained from the flight
controller, whereas the downward facing camera’s horizontal
and vertical field of view along with the IMU and barometric
sensor measurements are used to project the image plane
down to the ground plane. A perspective homography matrix
is calculated between the two planes to transform the pixel
coordinates into a relative position. For ArUco markers an
offset vector is added depending on the distance from the tip
of the n-fold marker.

The tracking algorithm uses an EKF to provide an accurate
prediction for the position of the moving platform at any
given time. This prediction allow images to be processed at
different frames per second (fps) according to a desired QoS.
Furthermore, the overall robustness of the system is increased
in case the moving platform is not detected in every image



Fig. 2. On the left, a top view of the Gazebo scene. On the right, a view of
the UAV attempting a landing on the moving platform.

frame. A velocity estimator for the moving platform is also
implemented as a part of the tracking algorithm.

V. EVALUATION

A. Use-case: agricultural safety

We evaluate our approach based on a simulated use-case
where a multirotor UAV identifies hazardous objects around
a moving platform, and lands on the moving platform. A
simulated field is created in Gazebo with randomly placed
objects as seen in Fig. 2. Object detection and classification
of cars, humans, tractors and cows is performed by feeding the
input image from the downward facing camera into a YOLOv3-
tiny CNN [20] implemented in ROS [21]. A dataset based on
Gazebo models was created consisting of 1200 images, 300
for each class. We trained the CNN with batch size 64 for 130
epochs using default parameters and for an input image size
of 416×416 pixels.

We assume a windy environment where wind forces are
applied on the center of gravity of the UAV with direction
parallel to the ground. The magnitude of the applied force is
calculated from the wind speed [22], [23]: The applied force
on the UAV is found to be 3.45N for an 8m/s wind speed,
and 7.76N for a 12m/s wind speed. The direction of the wind
force remains constant while its magnitude changes every 5.5 s
between -10% and +20% of the initial wind force. For a UAV
altitude of 6.0m and below, the wind force decreases linearly.
This model is used for all simulated tests.

B. Experimental setup

All experiments are performed in Gazebo using
Ubuntu 18.04 and ROS Melodic on a standard laptop.
The PX4 Software In The Loop (SITL) Firmware v1.10.2
is used as the flight controller and the IRIS quadcopter is
used as the UAV platform. A downward facing RGB camera
is placed on the UAV providing a 640×480 pixel image at
10 fps. An NVIDIA Jetson Nano with Ubuntu 18.04 and
ROS Melodic is used as the UAV’s companion computer.
Energy profiling is performed directly on the NVIDIA Jetson
Nano using powprofiler as outlined in Section III.

In tracking mode the UAV follows the moving platform at
a fixed altitude and maps the ground environment. In landing
mode the UAV follows the moving platform and gradually
lowers its altitude until it lands on it. Both tracking and landing
modes are evaluated for energy consumption and QoS under
cases of no wind, 8m/s and 12m/s wind disturbances.
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Fig. 3. Number of correctly detected objects under different conditions.
Grey color denotes a 0.1fps and black color denotes a 4fps update rate in YO.
Circles denote a 0.5fps and triangles a 10fps update rate in the LM.

C. Results

For energy evaluation of tracking, 8 tests were executed
for different rates of the YOLOv3-tiny ROS node YO (4fps,
1fps, 0.5fps, 0.1fps) and the landing marker detection node
LM (10fps, 0.5fps). For a YO 4fps update rate a power
consumption of 6.30W is observed while for 1fps and 0.1fps
update rates the power consumption drops to 4.8W and 3.9W
accordingly. By reducing the LM update rate from 10fps to
0.5fps, a further power saving of 0.15W–0.19W is achieved.

For QoS evaluation of tracking, 12 tests were executed
for different fps rates for YO (4fps, 0.1fps) and for LM
(10fps, 0.5fps) under 3 different wind speeds. The QoS is
determined as the number of correctly detected objects: objects
detected within a distance of 2m from their actual position
and classified correctly. The detection results can be seen in
Fig. 3. The best results were obtained for high YO and LM fps
update rates and no wind, where 28 out of the 32 objects were
detected. (High fps rates imply that each object is viewed more
times as the UAV moves.) For the same high fps values but
with a wind speed of 12m/s only 18 out of 32 objects were
detected. This difference is due to the UAV being at an angle
to balance itself against the wind, which causes some objects
to be outside the camera’s field of view or to be viewed at an
angle which the CNN has not been trained for.

For the energy evaluation of landing, 4 tests were executed
for different LM fps rates (10fps, 2fps, 1fps, 0.5fps). The
largest observed difference in power consumption is 0.14W
and is observed between the 0.5fps and the 10fps LM update
rate. Landing with 10fps update rate is however 30 s faster.

For the QoS evaluation of landing, 12 tests were executed
for different LM fps rates (10fps, 2fps, 1fps, 0.5fps) under
3 different wind speeds. The QoS is determined as the mean
squared error (MSE) between the predicted and actual position
of the moving platform. Four different altitude bins were used,
see Fig. 4. A large MSE of around 3m2 is observed for an
altitude greater than 20m for a 0.5fps rate, while an MSE close
to zero is observed for an altitude of less than 5m for an update
rate of 10fps. Wind disturbances do not significantly influence
the MSE. We believe the larger MSE for the y coordinates
compared to the x coordinates is caused by sudden changes
of the moving platform’s direction on the y axis.
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Fig. 4. Position error during landing and how it depends on the marker
detection rate at different altitudes and wind disturbances. Circles denote
errors in the x direction and triangles errors in the y direction.

D. Discussion

The experiments show that both tracking and landing are
operational in a simulated environment with a moving platform
and random wind conditions. The performance of both modes
is QoS-sensitive with a high success rate at high QoS levels,
and significantly lower performance at lower levels.

The potential energy savings from adapting the QoS by
changing the YO and LM fps values should be seen in relation
to the total energy consumption of the UAV. Consider a DJI
Phantom 4 multirotor and a Sky-Watch Cumulus fixed-wing
(the fixed-wing would need to circle while tracking and would
need VTOL capabilities to land). Using respective product
pages regarding battery capacity and flight time we estimate
that the Phantom uses roughly 140W while cruising whereas
the Cumulus uses roughly 40W while cruising. The saving
gained from changing the YO rate is 6.30W−3.9W = 2.4W
whereas the saving gained from changing the LM rate is
0.2W. For the Cumulus, there is thus a 6.5% potential energy
saving, whereas the potential energy saving only is 1.9% for
the Phantom. For the Cumulus this is considered large enough
to significantly impact the flying time of the drone. For the
Cumulus, the potential saving from adapting the LM QoS is
however only 0.5%. For the tracking mode, changing the LM
rate provided a minor saving of only 0.14W, but at the cost
of increased landing time. Therefore, although the higher-QoS
landing algorithm is marginally more expensive by 0.14W, the
UAV will overall save energy due to a reduced flight time.

VI. CONCLUSION AND FUTURE WORK

We have presented the energy-aware design of a vision-
based algorithm for autonomous tracking and landing in
varying environmental conditions, based on experiments with
an NVIDIA Jetson Nano companion computer. Our experi-
ments show that the proposed computer vision algorithms for
detecting the moving platform can be run at the highest QoS
level with only a marginal energy overhead, whereas adapting
the QoS level of the CNN results in a considerable power
saving for the system as a whole, representing a significant
power saving for a fixed-wing UAV. In terms of future work,
we are interested in automatically adapting the QoS level and
in testing this approach on a physical drone.
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